
DELAY ANALYSIS OF A REAL-TIME HARD RECONFIGURABLE
SYNCHROPHASOR SYNCHRONIZATION GATEWAY

Prottay M. Adhikari
Electrical Computer and Systems Engineering

Rensselaer Polytechnic Institute
Troy, NY, USA

email: mondap2@rpi.edu

Luigi Vanfretti
Electrical Computer and Systems Engineering

Rensselaer Polytechnic Institute
Troy, NY, USA

email: luigi.vanfretti@gmail.com

ABSTRACT
Phasor Data Concentrators (PDC) receive and time-

synchronize phasor data from multiple phasor measure-
ment units (PMUs) to produce a real-time, time-aligned
output data stream. PDCs are expected to handle large sets
of data and may consume substantial hardware resources
in terms of memory. This paper presents some prelimi-
nary results towards the development of a hard real-time
storageless Synchrophasor Gateway based on National In-
struments’ Compact Reconfigurable Input-Output (cRIO)
hardware platform. It utilizes the Khorjin library [1] which
is able to receive and parse synchrophasor data from a
PMU/PDC based on IEEE C37.118.2 protocol. A fully
functional PDC is expected to store and publish PMU data.
The proposed real-time hardware prototype, however does
not store data, as its goal is to provide essential synchro-
nization and aggregation functions to be used by protection
and control devices. Hence, this prototype is described as
a Synchrophasor Synchronization Gateway (SSG) instead
of a PDC. In this paper, elementary tests related to timing,
delay and reliability are performed on the SSG, and the re-
sults along with the observed issues are reported.
KEY WORDS

Phasor Data Concentrator (PDC), Phasor Measure-
ment Unit (PMU), Synchrophasor Gateway, Wide Area
Measurement System (WAMS), Wide Area Control Sys-
tem (WACS), Wide Area Monitoring Protection and Con-
trol (WAMPAC).

1 Introduction

1.1 Motivation

Phasor Data Concentrators (PDC) are integral part of mod-
ern synchrophasor measurement systems. PDCs are ex-
pected to receive, parse, allign, store and publish measure-
ment data from field PMUs. They are expected to be com-
patible with synchrophasor transmission protocols such as
IEEE C37.118.1/ 2 and IEC 61850-90-5. However, existing
PDC hardware architectures, fail to comply with hard real-
time control requirements. As reported in literature [2-4],
most implementations are purely on the software level, and
needs extensive testing in terms of real time performance.
In [8] the authors have proposed a similar platform for

WACS applications, for a single PMU stream. This paper
reports implementation and testing of a synchrophasor syn-
chronization gateway with multiple concurrent PMU/PDC
streams, which makes it an attractive infrastructure to be
used in WACS and WAMPAC applications.

This paper reports a prototype Synchrophasor Syn-
chronization Gateway (SSG) implemented in both real-
time software and real-time hardware which performs
the most essential functionalities of an industrial PDC, ex-
cept data-publishing and storage as the main goal is to pro-
vide synchronization and aggregation services for the real-
time controls and protection.

The implementation is carried out based on the com-
pact reconfigurable input-output (cRIO) devices. The un-
derlying cRIO hardware is configurable by a graphical in-
terface designed in the LabVIEW environment. This archi-
tecture is user friendly in terms of configuration, display
and hardware management.

1.2 Related Works

Because, the proposed SSG performs the tasks traditionally
performed by a PDC, the literature review mostly consists
of past research that dealt with PDC implementations. The
work in this paper extends the library presented in [1] for
unwrapping PMU data in the proposed prototype SSG. The
functions of this library are written in C and compiled into
a dynamically linked library using National Instruments’
CVI infrastructure. Concerning PDC design, [3] presented
important proposals in terms of standardization of the mea-
surement architecture. It also dealt with the problems of ac-
curate time synchronization and management of data-loss
scenarios. Even though this work was crucial in terms of
standardization, it did not propose any feasible hardware
implementation that can meet hard real-time control re-
quirements at the sub-second level. These standardization
efforts were further extended by the authors in [4]. The
results discussed in [4] are used in this work to compare
the work presented in this paper with the state of the art.
Authors in [2] experimented with Raspberry Pi based hard-
ware architecture for PDC implementation. Their work
was successful in implementing a functional PDC, but the
performance analysis in terms of time-synchronization, la-
tency, reliability were not reported. [5] presented compar-

1



Figure 1: An Overview of the Hardware and Software Components for the PDC Implementation

isons between the existing open source PDC software sys-
tems. The authors in [6] proposed and compared PDC net-
work architectures in a real life industrial scale networks in
Switzerland and Netherlands.

1.3 Contributions of this Paper

• The application and extension of a C-based library
to receive and parse synchrophasor data from a
PMU/PDC to construct multiple receiver threads of
the proposed prototype SSG.

• Implementation and testing of the proposed SSG pro-
totype using multiple concurrent PMU streams, and
characterizing its reliability and performance.

• Stress-testing of the SSG prototype by introducing
network traffic and characterizing its performance un-
der varying network conditions.

2 Proposed Real-time Hardware & Software
Architecture

This section describes the components in the hardware and
software layers of the proposed SSG prototype shown in
Fig. 1. Additionally, the laboratory-setup and equipment
used for testing the prototype are also introduced.

2.1 Software Components

The software architecture utilizes National Instruments’
virtual instrumentation (VI) infrastructure. In general,
there are two top level VIs. One of them runs on the real
time processor, and the other one runs on a Spartan 6 FPGA
inside the cRIO chassis. The VI that runs on the real time
processor (Khorjin PDC.vi) has all the functionalities for
networking, parsing and processing. These functionalities
are used to connect with different PMUs and to unwrap the
PMU data being received. The functionalities are encoded
in standard C, and were converted into a dynamic library
using National Instruments Windows CVI tool-chain. The
source code are also tested with Microsoft Visual Studio
and Eclipse, however the use of CVI tool-chain is the most
reliable and was ultimately recommended by NI. An ad-
ditional cpp file was written to configure the connection
settings for each of the PMUs that communicate with the
gateway. This file, along with an appropriate header, were
converted into dynamic libraries, which is used by the SSG
VI running on the RT processor of the compactRIO hard-
ware. The VI running on the FPGA communicates with the
C series NI 9467 GPS module and provides the time-stamp
which will enable the delay compuations in this paper.

2.2 Hardware Components

In addition to the software components described above,
the SSG has appropriate physical hardware to enable the
functionalities of those software components. The two ma-
jor components of the hardware are (a) RT processor Intel



Figure 2: Block Diagram of the Laboratory Experimental
Setup

Figure 3: Networking Infrastructure incorporating the CT-
910 Network Traffic Generator

Celeron U3405 of the cRIO 9081 chassis and (b) Xilinx
Spartan 6 LX 75 FPGA. The RT processor runs Microsoft
WES 7 Runtime OS. All the C37.118 functionalities along
with the TCP communication interfaces run on this part of
the hardware. On the other hand, the Spartan 6 FPGA in-
teracts with the NI 9467 GPS module to acquire the lat-
est time-stamp, and sends this time-stamp to the WES7 OS
running on the real time processor for further use.

3 Laboratory Experimental Setup

To analyse the performance of any prototype PDC/SSG,
more than one PMU is required. In this case, the PMUs
used were implemented on three separate compact RIOs
(one cRIO 9082 and two cRIO 9068). The basic design
of these PMUs were obtained from National Instruments
’Advanced PMU Development System’ [9] . Those designs
were compiled and synthesized on NI’s high performance
computing server using Xilinx ISE synthesis toolchain. As
seen from the diagram in Fig. 2, the TCP network is used
to interface these PMUs run on the real time processors of
the cRIO devices.

For delay analysis purposes, the SSG implementation
requires to receive an accurate time-stamp from the indi-
vidual PMUs which are part of the networked stream of
each device; and most importantly from the GPS antenna

through the NI 9467 GPS synchronizer. The SSG com-
munication functions run on the real time processor of the
cRIO 9081, while the Spartan 6 FPGA inside the cRIO runs
the program to receive the GPS data. This part of the hard-
ware also acquires accurate GPS time reference from the
antennas as shown in the block diagram in Fig 2. GPS an-
tennas also provide the 3 PMUs running on the cRIO 9082
and cRIO 9068 devices with their own time references via
three NI 9467 GPS acquisition modules.

All the cRIOs are connected to the same TCP/IP net-
work of the laboratory. The PMUs and the SSG running
on the cRIO devices are expected to be discoverable by
one another, since they are under the same subnet mask.
With all of this setup connected, some disturbances (e.g.
step changes) can be easily provided inside any of the pro-
grammable signal generators, for the sake of experimen-
tation. It is important to note that, the cRIOs can talk to
each other, via the physical TCP/IP network through their
own ports. In our case, the SSG on the cRIO-9081 was
interacting with the PMU1 on cRIO-9082 via port 4712,
with PMU2 on cRIO-9068 via port 4713 and with PMU3
on cRIO-9068 via port 4714.

To test the proposed SSG prototype’s reliability, a
configurable network traffic generator CandelaTech CT-
910 [10] was used. Using the CT-910 device, additional
delays were introduced in between the PMU and the proto-
type SSG. In Figure 3, the insertion of the CT-910 network
traffic generator within the existing network is graphically
shown. The network traffic generator is capable of intro-
ducing a user-configurable delay between the two network.
The CT-910 runs a standard Linux operating system, and
is capable of modifying its own internal network architec-
ture on the fly. This can be performed from a networked
GUI, or by directly running shell-commands on the operat-
ing system of the network traffic generator.

The PMUs need to be fed with legitimate 3 phase
signals in order for them to produce any meaningful out-
put stream. To this end, three configurable time synchro-
nized balanced 3 phase signals were designed on the ex-
isting cRIO 9081 device by the use of NI 9263 C series
modules and configured using a LabVIEW GUI. An ad-
ditional cRIO 9068 hardware was used to generate three
programmable balanced three phase signals. A picture of
part of the hardware used for the experiments is shown in
Fig. 4.

4 Experimental Results and Analysis

4.1 Real-Time performance testing

The first test for validating the SSG prototype was to ver-
ify whether the communication is continuous, real-time and
accurate. It needs to be noted, that the data observed in the
SSG may suffer a lack of accuracy because of occasional
data drops over the TCP network from PMU to SSG. It is
also important to note that, a reduction in the transmission
rate can lead to a more reliable communication, however, it



Figure 4: The Experimental Setup

Figure 5: Frequency Measured in PMU (white) and the
Measured Frequency received by the PDC(green)

will sacrifice the data rate offered to the SSG. To illustrate,
in figure 5, the PMU (white) reports the frequency at a rate
of 50 samples/second. However, the reporting rate is set to
20 samples/sec, thus the SSG reads only 20 samples every
second.

For testing, the entire experiment was configured to
run for several days, to make sure the TCP communica-
tion would not abruptly break or saturates. Upon rigor-
ous testing, it was concluded that, the proposed architecture
was stable, and can support multiple PMUs (up to 3 were)
tested, connected over a network.

4.2 Formulation of delay from PMU to SSG

The reference timing diagram for the experimental setup
is shown in Fig 3. PMU1 measures data at time t1, whose
phasors have a corresponding time-stamp TS1. PMU2 mea-
sures data at time t2, with corresponding time-stamp TS2.
PMU3 measures data at time t3, with corresponding time-
stamp TS3. All these measurements are sent to the SSG.

The SSG will read any data at time tP with corre-
sponding time-stamp TP . TP will be greater than T1, T2
and T3, because the SSG receives data that will be immi-

Figure 6: Timing Diagram of the Experimental Setup

nently delayed. For a given data snapshot, three new vari-
ables are defined as follows.

∆1 = TP − TS1,∆2 = TP − TS2,∆3 = TP − TS3

In the sequel, ∆1 ∆2 and ∆3 are analyzed to charac-
terize the performance of the SSG setup. The PMU with
the shortest delay can be found very easily. When more
than three PMUs connected to the SSG, it would be nec-
essary to sort the connected PMUs in terms of delay. In
neutral test conditions ∆1, ∆2 and ∆3 exhibited similar
characteristics. NI’s Network Published Shared Variable
(NPSV) library was used to measure and compute these
delays. With this test conditions, the three aforementioned
delays were characterized by the statistic reported in Table



1. Afterwards, the experiments were performed without
NPSV infrastructure as well.

Table 1 clearly shows that the network is largely uni-
form across all three communication links. Hence, the next
experiments on delay were performed only for PMU 1, as
all three PMU-SSG links will behave similarly way under
the studied network conditions.

Figure 7: Example of 100 ms delay injection in the com-
munication link

4.3 Stress-testing the SSG

In this particular test, artificial delays were introduced in
between PMU1 and SSG prototype. To introduce artificial
delays, CT910 Network Traffic Generator was used. The
hardware configuration is shown in Fig 3. The CT910 has
a configurable GUI which can tamper with the network be-
tween the two ports where PMU1 and SSG prototype were
connected, respectively. In Fig. 8, the GUI is shown. It can
be seen that the network between the two ends are closed
(black) and the network is functional (45M-clean). It can
incorporate user specified network traffic, as shown by the
green lines (45M-random and 45M-impair). In Fig. 7, a
sample network impairment (by a delay injection of 100
ms) for a duration of 15 seconds is shown. Figure 9 shows
the plots with variable amounts of network delay injected
in between the PMU1 and the SSG prototype. It is interest-
ing to note that, with 50 ms delay injected (blue plot), the
actual average PMU1 to SSG delay is close to 90 ms. This
gives an indication that the network itself has an intrinsic

Table 1: Delay Statistics for all the PMUs (NI Network
Published Shared Variable used for Measurements)

∆1 ∆2 ∆3

Mean (s) 0.0481 0.04726 0.04824
Standard Deviation (s) 0.0199 0.02065 0.01945

Figure 8: Tampering the Network Between PMU 1 and the
SSG

Figure 9: PMU1 to SSG delay after variable additional net-
work traffic injection

delay of about 40ms. To validate this hypothesis, from all
the delay plots of Fig 8, the injected delay is subtracted (i.e.
if the injected delay is 500 ms, 500 ms is subtracted from
all observations). The new parameter is described as the
Estimated Pass-through (EPT) delay from here onward.

The EPT delays for three different values of fixed in-
jected delay (50ms, 100ms, and 500ms) are plotted in fig

Figure 10: Estimated Pass-through (EPT) Delay for PMU1
to SSG delay after variable additional traffic injection



Figure 11: Histograms for Measured Delay in different network traffic injections

Table 2: Delay Reduction after remove NI Network Pub-
lished Shared Variable Infrastructure

Test-setting µ σ
With NI Network Published
Shared Variable 0.0481 0.0199
Without NI Network Published
Shared Variable 0.0180 0.0215

10. It can be seen that, the intrinsic delay of the path is
fairly similar for all three configurations. It was also ob-
served, that even without any injected delay, the network
exhibited an average PMU1-to-SSG delay of 47 ms over a
run-time of 4 hours.

Figure 12: Fitted Distributions of the Delay-Histogram for
different values of injected delays

To investigate further, histograms for all the delays
with varying injected delays are shown in Fig 11, along
with the delay of the system when the network is set in
pass-through mode (i.e. no injected delay). It can be ob-
served that, the histogram gets wider as the injected delay
increases. Figure 12 shows the fitted distributions of the
EPT delay-histograms for these observations.

In order to reduce this delay, two changes were made
to the network (i) the PMU-SSG interconnect was recon-
nected with crossover cables, (ii) all instances of NI Net-

Figure 13: PMU1 to SSG delay without using NI Network
Published Shared Variable

Figure 14: Absolute PMU1 to SSG delay with very high
delay-injection (750 ms)



work Published Shared Variables were removed. Once,
these changes were made, the actual time of execution of
the SSG algorithm and data-transmission protocols should
be the only component present in the total delay.

However, without the presence of shared variables,
the measurement procedure becomes more difficult. To
measure precise time-stamps in this new setting, time-
stamps are converted to numbers and sent through the ana-
log channels of the PMU which are part of the C37.118.2
protocol. In this new setting, the delay between the PMU1
and the SSG prototype is observed. A standard plot of the
reduced delay is shown in Fig 13. Table 2 exhibits the im-
provements observed in terms of timing when compared to
the results in Table 1.

In order to stress the system, the injected delay was
increased from 500 ms to 750 ms. As shown in Fig. 14, it
was observed that, with such a high injection of delay, the
network becomes extremely unstable and breaks the com-
munication link between the PMU and SSG after a few sec-
onds. In fact, this phenomenon was observed, whenever
the injected delay was more than 600 ms. It can thus be
concluded that 500 ms is the maximum possible delay that
can be injected into the network without compromising the
reliability of the system.

5 Conclusion

This paper proposes a new architecture an implementation
for a true real-time Synchrophasor Synchronization Gate-
way (SSG) architecture. The goal of this SSG is to replace
a PDC in PMU-based real-time control applications. For
testing, three physical PMUs were connected to the proto-
type SSG. The delay of measured data transmission from
all the PMUs to the SSG was recorded and analyzed for as-
sessing the reliability of the proposed real-time SSG archi-
tecture. With additional hardware, network traffic of vary-
ing amount is injected- to test the timing-performance and
robustness of the proposed SSG prototype. By these exper-
iments, the delay of the TCP network between PMU and
SSG prototype was characterized, its limits were tested,
and possible counter-measures to minimize this delay was
proposed.

References

[1] S. R. Firouzi, L. Vanfretti, A. Ruiz-Alvarez, F. Mah-
mood, H. Hooshyar and I. Cairo, ”An IEC 61850-
90-5 gateway for IEEE C37.118.2 synchrophasor data
transfer,” 2016 IEEE Power and Energy Society Gen-
eral Meeting (PESGM), Boston, MA, 2016, pp. 1-5.

[2] P. Castello, C. Muscas, P. Attilio Pegoraro and S.
Sulis, ”Low-Cost Implementation of an Active Pha-
sor Data Concentrator for Smart Grid,” 2018 Work-
shop on Metrology for Industry 4.0 and IoT, Brescia,
2018, pp. 78-82.

[3] M. G. Adamiak, M. Kanabar, J. Rodriquez and M. D.
Zadeh, ”Design and implementation of a synchropha-
sor data concentrator,” 2011 IEEE PES Conference
on Innovative Smart Grid Technologies - Middle East,
Jeddah, 2011, pp. 1-5.

[4] H. Retty, J. Delport and V. Centeno, ”Development of
tests and procedures for evaluating phasor data con-
centrators,” 2013 IEEE Grenoble Conference, Greno-
ble, 2013, pp. 1-5.

[5] J. Pongnark and S. Tanachutiwat, ”Performance
and reliability benchmarking of phasor data con-
centrator software systems and preliminary design-
ing of wide-area monitoring system,” 2017 14th
International Conference on Electrical Engineer-
ing/Electronics, Computer, Telecommunications and
Information Technology (ECTI-CON), Phuket, 2017,
pp. 326-329.

[6] A. Dervikadi, P. Romano, M. Pignati and M. Paolone,
”Architecture and Experimental Validation of a Low-
Latency Phasor Data Concentrator,” in IEEE Transac-
tions on Smart Grid, vol. 9, no. 4, pp. 2885-2893, July
2018.

[7] L. Vanfretti, I. A. Khatib and M. S. Almas, ”Real-time
data mediation for synchrophasor application devel-
opment compliant with IEEE C37.118.2,” 2015 IEEE
Power & Energy Society Innovative Smart Grid Tech-
nologies Conference (ISGT), Washington, DC, 2015,
pp. 1-5.

[8] L. Vanfretti, G.M.Jnsdttir, M.S.Almas, E.Rebello,
S.R.Firouzi, M.Baudette, ”AudurA platform for
synchrophasor-based power system wide-area control
system implementation” SoftwareX, Volume 7, Jan-
Jun 2018. pp- 294-301.

[9] http://www.ni.com/en-us/innovations/energy/power-
quality-analysis.html

[10] https://www.candelatech.com/ct910 product.php


