
Synthetic Training Data Generation for ML-based
Small-Signal Stability Assessment

Sergio A. Dorado-Rojas, Marcelo de Castro Fernandes, Luigi Vanfretti
Rensselaer Polytechnic Institute

Electrical, Computer, and Systems Engineering Department
Troy NY, USA

{dorads, decasm3, vanfrl}@rpi.edu

Abstract—This article presents a simulation-based massive
data generation procedure with applications in training machine
learning (ML) solutions to automatically assess the small-signal
stability condition of a power system subjected to contingencies.
This method of scenario generation for employs a Monte Carlo
two-stage sampling procedure to set up a contingency condition
while considering the likelihood of a given combination of line
outages. The generated data is pre-processed and then used to
train several ML models (logistic and softmax regression, support
vector machines, k-nearest Neighbors, Naı̈ve Bayes and decision
trees), and a deep learning neural network. The performance of
the ML algorithms shows the potential to be deployed in efficient
real-time solutions to assist power system operators.

I. INTRODUCTION

Motivation

Simulation tools are broadly used to gain insight into current
and future operating conditions of the grid. Despite this, due
to the vast number of variables and the ubiquitous uncertainty
of modern networks, the amount of scenarios that need to be
considered by a human operator in simulation-based studies
is exponentially large. In this situation, a need arises not only
to automate the simulation procedure (to massively generate
data) but also to simplify data interpretation. For the former,
Python-based solutions have been gaining popularity in almost
all engineering fields by providing simple automation solutions
(see [1] for an application example in power grids).

Regarding data interpretation, Machine Learning (ML) tech-
niques are powerful statistical methods that can be used, for
example, to extract information from large sets of data [2].
In special, Deep Learning (DL) is a particular family of ML
techniques that employ Neural Networks (NNs) as building
blocks. Both ML and DL solutions have been recently applied
in power systems for the classification of events from PMU
data [3], [4], voltage stability [5]–[7], and dynamic security
assessment [8], among others. ML and DL solutions have

This work was funded in part by the New York State Energy Research and
Development Authority (NYSERDA) through the Electric Power Transmis-
sion and Distribution (EPTD) High Performing Grid Program under agreement
number 137951, in part by the Engineering Research Center Program of the
National Science Foundation and the Department of Energy under Award
EEC-1041877, in part by the CURENT Industry Partnership Program, and
in part by the Center of Excellence for NEOM Research at King Abdullah
University of Science and Technology.

The authors would like to thank Tetiana Bogodorova for the insightful
discussions that helped improve the final presentation of the paper.

been recently applied in power systems for the enhancement
and evaluation of small-signal stability. For example, the
work of [9] performs coordinated tuning of PSS parameters
using heuristic optimization algorithms. Likewise, in [10] a
cuckoo search is employed to find optimal PSS parameters that
guarantee small-signal stability. Regarding NNs, in [11] the
parameters of a unified power flow controller are tuned via a
NN whose weights are optimized using Levenberg-Marquardt
optimization.

On the other hand, within several well-established stability
techniques, small-signal analysis quantifies the effects of small
disturbances in a given power system. Such small-scale per-
turbations can lead to large instabilities if specific modes of
the system are excited. Traditionally, oscillations are studied
by obtaining a linear model of the power system around a
stable equilibrium point, and evaluating eigenvalues of this
model. Alternatively, eigenvalues can be determined from
time-domain measurements or simulation data via traditional
signal processing and system identification algorithms [12].

Once the eigenvalues describing a particular small-signal
scenario are available, its classification in pre-established
categories is straightforward. In fact, given the set of dominant
eigenvalues λi of the system in a particular contingency sce-
nario, the operational state may be assessed by computing the
damping ratio ζi for each eigenvalue λi. Hence, ζ represents
a metric that can be used to define a 100%-accurate classifier
to categorize contingency scenarios (ζ classifier).

Furthermore, the most challenging step from the compu-
tational point of view is the state matrix computation rather
the damping ratio calculation, specially if the former is done
numerically instead of analytically [13]. Despite this, a system
identification-based method is preferred since it is 100%
accurate at evaluating the system’s condition. A valid question,
however, would be if an alternative ML solution could be
used to bypass the system identification step while producing
more computationally efficient solutions. For this alternative to
be practically significant, the ML solution should be accurate
enough at both learning the linear system representation and
evaluating the system condition from eigenvalues. This paper
focuses on the latter issue and explores the small-signal
stability assessment accuracy of several ML techniques.



Contribution

This paper takes the challenge to generate massively contin-
gency data and to automate small-signal stability computation
by ML methods. The contribution of this work is as follows:
• we propose a simple ad-hoc Monte Carlo sampling

technique to generate numerous contingency scenarios
for a given power system model. Then, each scenario
is simulated in a Modelica-based environment to obtain
labeled big data for ML algorithms training;

• we use the generated big data to train several conventional
ML algorithms (logistic and softmax regression, support
vector machines, k-nearest Neighbors, Naı̈ve Bayes and
decision trees), and a deep learning NN to classify the
operating condition of a power system after a contingency
(i.e., one or more line trips) based on a small-signal
stability metric;

• we propose an evaluation metric as a guideline for the
selection of the best classifier in terms of its performance.

We verify that once trained, the ML approaches produce
results as accurate as the damping ratio-based classifier, which
is implemented in Python using numPy in a vectorized fashion
(ζ classifier). Moreover, almost all ML solutions take less
prediction time than the hard-coded domain-specific algorithm
to classify operation scenarios. This is desirable for deploying
a trained solution inside a real-time application. In particular,
the trained NN shows 120x faster prediction time than the
damping ratio classifier with an accuracy above 95%.

An important contribution of the paper concerns the ap-
proach for massive data generation. The information required
for a linear analysis (that is, the A,B,C,D matrices of a
linear state-space representation) is obtained through a routine
implemented in Dymola, a Modelica-based environment. We
take advantage of this built-in functionality to linearize a
nonlinear dynamic power system model around an equilibrium
point. By doing so, it is possible to perform a small-signal
analysis for a vast quantity of scenarios in a power system
using a model constructed using the Open Instance Power
System Library (OpenIPSL) [14], a library for phasor time-
domain analysis in Modelica. Each scenario is generated by
a two-stage Monte Carlo sampling procedure that takes into
account the topology of the system as described in Section III.

By automating Dymola linearization with Python [15], a
vast amount of data is generated for several grid conditions
with different small disturbances in the form of contingencies.
Such an intensive simulation-based data generation approach
has been recently used in other power system studies such
as transmission planning as well [16]. In this case, the data
is employed to train an automatic classifier such as an ML
algorithm to evaluate small-signal condition of the system. The
complete code used for this paper is available on GitHub1.

Paper Organization

This paper is organized as follows: in Section II we present
a brief overview of small-signal analysis and how eigenvalues

1 https://github.com/ALSETLab/Synthetic Data Generation ML Small Signal

can be classified. The test power system and the data genera-
tion procedure are outlined in Section III. Section IV describes
and presents the proposed Neural Network architecture, the
results of its training procedure, and its performance after
being deployed. Finally, Section VI concludes the work.

II. FOUNDATIONS OF SMALL-SIGNAL ANALYSIS

Consider a generic representation of a power system, ig-
noring discrete events such as faults in protections, with m
inputs, p outputs and n states, whose state-space is described
by ẋ = f (x,u, t), and y = g (x,u, t) where x ∈ Rn×1
is the state vector, u ∈ Rm×1 is the vector of m inputs to
the system, and f ∈ Rn×1, g ∈ Rp×1 are two nonlinear C∞
functions. If time dependence is implicit (i.e., time does not
appear explicitly in the system equations), we have

ẋ = f (x,u)

y = g (x,u) .
(1)

For the system in Eq. (1), an equilibrium exists whenever
the state derivatives are zero (ẋ = 0). At a given equilibrium
point (x0,u0), we have f (x0,u0) = 0. Now, we analyze
the situation where the system is in equilibrium and a small
disturbance occurs. The disturbance brings the system to a
new state. The dynamics at the new operating point take the
form

˙̃x = f (x̃, ũ) = f (x0 + ∆x,u0 + ∆u)

ỹ = g (x̃, ũ) = g (x0 + ∆x,u0 + ∆u) .
(2)

If the disturbance under consideration is small enough2, we
can perform a Taylor Series expansion around an equilibrium
point for both functions f and g to obtain a linear repre-
sentation of the nonlinear system. This can be achieved by
a first-order Taylor Series truncation neglecting all terms of
order larger than one, thus keeping only the matrix of first-
order derivatives (Jacobian linearization). An application of
this formula to the system in Eq. (1) leads us to

∆ẋ = A∆x + B∆u

∆y = C∆x + D∆u
(3)

where A := ∂f/∂x, B := ∂f/∂u, C := ∂g/∂x and
D := ∂g/∂u. Note that the system representation in Eq.
(3) corresponds to a state-space realization of a Linear Time-
Invariant system that can be analyzed using linear methods.

Linear analysis techniques can be employed to quantify
system behavior after a small disturbance (hence the name
small-signal) such as tripping of a given line. System modes
of a linear system are completely specified by the eigenvalues
of the system matrix A. For the ith eigenvalue λi with
algebraic multiplicity ni, the associated ni modes are c̄itkeλit

for k = 0, 1, . . . , ni − 1, with c̄i ∈ C. The characteristic of
the mode associated to a single eigenvalue can be completely
described by a single metric known as damping factor or
damping ratio ζ. As shown in Figure 13 , the damping factor

2This means that the region of convergence of the Taylor Series corresponds
to a non-empty set in the neighborhood of the equilibrium point.

3Since we are using Lyapunov’s first method for the nonlinear system in
Eq. (1), no conclusion regarding equilibrium stability can be drawn if the A
matrix is not Hurwitz (i.e., ζ ≤ 0).



determines uniquely the characteristics of the system mode
associated with a particular eigenvalue.

σ

jω

jωi

−jωi

σo,1

σo,2σcd

σu,1

σu,2

θ

ωn

λu = σu + jωu

λ∗u = σu − jωu

jωu = ωn
√

1− ζ2

σu = ζωn

ζ < 0: Unstable
ζ = 0: Oscillating
0 < ζ < 1: Underdamped
ζ = 1: Critically damped
ζ > 1: Overdamped

Fig. 1. Damping factor depending on different eigenvalue locations on the
complex plane.

Thanks to the characteristics of the damping factor as a
discriminative scalar metric, it is possible to categorize eigen-
values based on ζ such that each of the classification groups
represents a state of an electric grid if the corresponding
eigenvalue is linked to a dominant mode. This automatic
labeling can help learn the stability condition of a power
system.

III. SCENARIO SAMPLING FOR DATA GENERATION

The IEEE 14 bus network is used as a test bench to generate
large-scale data for NN training by systematically applying
contingencies and collecting simulation data.

<1><1>

<11><11>

<9><9>

<6><6>

<5><5> <4><4>

<3><3><2><2>

<7><7>

<13><13> <10><10>

<14><14>

<8><8>

<12><12>

L5L5

L3L3
L6L6

L8L8

L2L2

L10 L10 

L11 L11 

L12 L12 

L17 L17 

L14 L14 

L15 L15 
L16 L16 

L7L7

L1L1

pwLinepwLine

Fig. 2. IEEE 14 nodes test system.

This system, which is shown in Figure 2, counts with 5
generators, 16 lines and 4 transformers. In summary, there
are 20 branch elements in the system, all of them having an
impedance in the corresponding power system model.

If the branch impedance value Xi of one of these element
models is made large enough, we would have emulated a

line opening in the system without actually removing the
component. In fact, by letting Xi ≈ 1012 we do not alter
the topology of the grid (and do not change the number of
states nor the size of the A matrix) but we effectively ”apply”
a contingency to the system which is equal to disconnecting
the branch.

Considering that each of the 20 branch elements can be
tripped, there exist 20 possible scenarios that can help to
evaluate the disconnection of a single element. Likewise, if
two branches are opened simultaneously, 190 possible sce-
narios can be tested by selecting all branches pairwise. In
general, letting n being the total number of branches, and
k the number of simultaneous disconnections, the amount of
possible scenarios with this contingency configuration is given
by

Sn,k =
n!

(n− k)!k!
. (4)

For this study, there is no need to consider all lines being
opened at the same time since it is not physically significant.
Hence, a maximum of kmax = n − 1 = 19 simultaneous
disconnections is considered. In addition, note that kmin = 1.
Thus, it is possible to calculate the total amount of possible
scenarios as

T =

kmax∑
kmin

S20,k =

19∑
k=1

20!

(20 − k)!k!
= 1, 048, 574. (5)

From the total amount of possible scenarios, T , it is neces-
sary to select a subset of events with physical significance. To
address this issue, an ad-hoc Monte Carlo method, consisting
of a two-stage sampling procedure to select scenarios, is
proposed. In the first stage, the number of lines that will be
opened is selected. Here, it is necessary to find a probability
distribution that reflects the fact that scenarios with a smaller
number of events are more likely to occur and, therefore,
should be more likely to be selected. To take this constraint
into account, a modified Poisson distribution is proposed, giv-
ing larger probabilities to smaller values of k. The Probability
Density Function, is illustrated in Figure 3 is defined as:

p(k) =
1

k!
∑19

n=1
1
n!

≈ 1

k!(e− 1)
, (6)

where e is Euler’s number. Once the number of lines is fixed,
the second stage starts, and one scenario is selected from the
pool of all possible combinations with the specified number of
contingencies. Thanks to this ad-hoc method, 20,000 different
simulation scenarios are generated.

Once a simulation scenario has been selected, the cor-
responding branches in the system model in Dymola are
disconnected. Dymola’s built-in function linearizeModel
is used to extract the state matrix and the eigenvalues for
each scenario. This process is automated in Python using
the so-called Python-Dymola Interface (PDI) [15], that allows
combining the simulation power of Dymola with Python
capabilities for a variety of purposes. The usage of PDI
also allows several robust ML development libraries, such



as scikit-learn and TensorFlow, to be used to train
classification ML/DL solutions from the significant amount
of data produced by massive simulations.

Fig. 3. Probability Distribution Function for the number of lines to be opened
for contingency generation.

IV. ML ALGORITHM DESIGN, TRAINING AND
PERFORMANCE

In this section, we briefly describe the different steps carried
out to design the ML/DL algorithms employed to classify the
different contingency scenarios into pre-established categories.
– Step 1 - Data Generation: we use 20,000 scenarios of
the IEEE 14 bus system to generate eigenvalue data. Dymola
succeeded in linearizing 19,815 of those scenarios. Since
each one is associated with 49 eigenvalues, a total number
of 970,935 eigenvalues was produced. An overview of the
generated eigenvalues is shown in Figure 4.

Fig. 4. Distribution of raw eigenvalues in the complex plane.

– Step 2 - Data Preprocessing: the raw data obtained
from simulations is organized and labeled (i.e., by manually
classifying the eigenvalues, computing the damping ratio and
tagging them according to the pre-defined categories below,
what we refer to as hard-coded classifier). Each eigenvalue
is classified within one of six categories (Figure 5) that are
defined as follows:

1) Unstable (ζ < 0): if an eigenvalue lies on the right-half
plane.

2) Stable but critical condition (0 ≤ ζ < 0.05): the
eigenvalue is stable or it is oscillatory (so no conclusion
can be drawn about the stability of the system). This is
a condition for which an action of the system controls
is required since a small disturbance can lead to insta-
bilities and/or heavy oscillatory modes in the system.

3) Acceptable condition within operating limits (0.05 <
ζ < 0.1): in this case, the damping of the system is large
enough to handle and tolerate a small-disturbance. As a
consequence, the operation of the system is labeled as
acceptable.

4) Good operating condition (0.1 ≤ ζ < 1): for this
scenario, the damping ratio is larger than 10% and
the response will show some oscillation due to the
underdamped nature of the corresponding eigenvalue.

5) Satisfactory operating condition (ζ > 1.1): this cat-
egory gathers real eigenvalues whose overdamped re-
sponse is satisfactory in terms of oscillations. Normally,
these eigenvalues are not dominant. Hence, they do not
impose its dynamics on system response.

6) Irrelevant (eigenvalue at the origin or close to it):
category that groups the eigenvalues that are at the origin
or close to it (within a neighborhood of radius 0.2).
They mostly represent integral relationships between
state variables (i.e., between ω and δ).

σ

jω

Unstable
Critical
Acceptable
Good
Satisfactory
Irrelevant

Fig. 5. Regions of each classification category on the complex plane.

In the pre-processing stage, the eigenvalues whose magni-
tude is magnitude larger than one are normalized (Figure 6).
All λi-s lying inside the unit circle are not touched since the
information they convey regarding the stability boundary of
the system would be lost.
– Step 3 - Model Design, Training and Evaluation: we
evaluated both classical ML techniques for classification as
well as a fully-connected NN. The selected supervised ML
algorithms are multi-class logistic regression (LogReg), soft-
max regression (SoftmaxReg), linear Support Vector Machines



(SVM), k-nearest neighbors (k-NN), Naı̈ve Bayes and decision
trees.

Fig. 6. Distribution of normalized eigenvalues in the complex plane.

The reader is referred to [2] for an in-depth explanation
of each ML algorithm. We will place special attention to the
NN design since it is the best performing method among all
ML/DL techniques considered in this study.

The proposed NN architecture is presented in Figure 7.
It consists of six fully-connected layers, four of them with
learning parameters. Two dropout layers are added to reduce
overfitting and improve generalization performance. The input
layer and the two hidden layers employ a ReLU unit as an
activation function. Since this is a multi-class classification
problem, a softmax function is suitable as an output activation.

Fig. 7. Neural Network architecture.

Let m be the number of training samples in a batch. The
input feature matrix will be Xm×2. Then,

H[1] = ReLU
(
XW[1] + b[1]

)
D[1] = dropout

(
H[1]

)
H[2] = ReLU

(
D[1]W[2] + b[2]

)
D[2] = dropout

(
H[2]

)
H[3] = ReLU

(
D[2]W[3] + b[3]

)
Y = σM

(
H[3]W[4] + b[4]

)
T = argmax (Y)

(7)

where the hidden states are described by the matrices
H[1], H[2], H[3] ∈ Rm×100, σM

(
Z[4]

)
∈ Rm×5 with

Z[4] := H[3]W[4] + b[4]. D[1] and D[2] are the outputs of
the dropout layers (not trainable). The weights and biases
are W[1] ∈ R2×100, W[2] ∈ R100×100, W[3] ∈ R100×100,
W[4] ∈ R100×5, b[1], b[2], b[3] ∈ R100×1, and b[4] ∈ R5×1.
Y ∈ Rm×5 is a matrix whose mth column contains the
probability of each of the m inputs to belong to each category.
Finally, T is a matrix whose mth vector has a 1-entry at the
position corresponding to the class with the highest probability,
and zero everywhere else.

The loss function is a cross-entropy function defined
minibatch-wise as `m = − 1

m

∑5
i=1 log yi where yi is the ith

component of the mth column of Y. Finally, the total loss
is computed by adding the individual losses per minibatch
as L =

∑
<m> `m. The weights and biases are learned by

minimizing the loss function L. The solution of this complex
optimization problem is carried out by the specialized Python
library TensorFlow. The behavior of the loss function per
learning epoch can be detailed in Figure 8, together with the
results of training and testing accuracy. The number of epochs
is set to 50 to get the final values of testing (97.79%) and
training (98.60%) accuracies before deploying the NN.

Fig. 8. Loss function value, training and testing accuracy per training epoch.

Note that the damping ratio computation is required for
creating the labels for each category (what we call a hard-
coded classifier) but not for the training process. In particular,
the NN may learn the damping ratio representation of the
eigenvalues in some hidden layers if it is useful for the
classification task itself.

Finally, after training the NN is evaluated on the validation
set. The results of the prediction for all methods can be found
in the GitHub repository, together with more visualization of
the predictions. The accuracy on the validation stage for the
NN was of 93.36%. In Figure 9, it can be seen that the NN
learns effectively the highly nonlinear decision boundaries that
separate each classification group in the complex plane since
the predicted labels (right) are almost the same for all cases
to the ground-truth (left). The most pronounced discrepancy
is the misclassification of few ’good’ instances as ’critical’
eigenvalues (close to Re{s} = −0.2).



Fig. 9. Ground truth and prediction results for the trained NN.

To quantify the performance and benchmark the different
algorithms against each other, a simple numerical score was
defined. Let tex be a vector containing the prediction time
for every algorithm. atrain and atest, ptrain and ptest, and
rtrain and rtrain are vectors containing the information about
accuracy, precision and recall for the training and testing set,
respectively. Then, the score for the ith algorithm is given by:

s[i] = 0.4

(
min (tex)

t
(i)
ex

)
+ 0.2

[
1

3

(
atrain

max (atrain)
+

ptrain

max (ptrain)
+

rtrain

max (rtrain)

)]
+ 0.4

[
1

3

(
atest

max (atest)
+

ptest

max (ptest)
+

rtest

max (rtest)

)]
(8)

This score benefits the method with the minimum execution
time which maximizes training and testing accuracy. For this
reason, k-NN has a poor score despite its high accuracy,
precision and recall performance. Testing has a higher weight
than training on the final score since the algorithm is exposed
to new instances, and therefore this number is a better indicator
of generalization. The results for each method are presented in
Table I where the accuracy, precision and recall are computed
on the testing set.

TABLE I
PERFORMANCE METRICS AND SCORE FOR ML/DL CLASSIFIERS

Method tpred Acc Prec Rcl Score
ζ classifier 5.477 s 100% 100% 100% 0.6032

LogReg 0.058 s 78.20% 64.09% 79.07% 0.7671
SoftmaxReg 0.054 s 78.10% 68.22% 83.02% 0.8067
Linear SVM 0.051 s 67.79% 41.61% 36.82% 0.6228
k-NN 33.027 s 99.83% 99.68% 99.92% 0.5997

Naı̈ve Bayes 0.255 s 97.11% 86.42% 93.93% 0.6091
Decision Trees 0.057 s 98.93% 93.44% 96.19% 0.8933

Neural Networks 0.045 s 98.53% 92.49% 95.90% 0.9750

V. SCALABILITY

The proposed method to generate contingency scenarios can
be scaled to deal with larger systems both in terms of buses
(BUS) and number of states (STA) and variables (VAR). Note
that for line openings, the maximum number of scenarios
(SC) depends on the number of branches in the model (either
transmission lines or transformers, written as BR in Table II).

Systems with more than 30 branches (such as the Nordic
44) were constrained to have a maximum of five simultaneous

contingencies (i.e., so that N − 5 is considered) to avoid
sampling of unrealistic scenarios. Table II illustrates how the
number of scenarios increases for different systems along with
the estimated contingency pool generation time or execution
time of the program (ET). This scalability benchmark was
performed on a Ubuntu 18.04.5 LTS machine with a AMD
Epyc 7601 32-core processor and 512 GB of RAM.

TABLE II
SCALABILITY OF SCENARIO GENERATION FOR SEVERAL SYSTEMS

System BUS STA VAR BR SC ET
IEEE 9 9 24 203 9 510 0.0348 s

Seven Bus 7 132 678 18 262,142 0.0781 s
IEEE 14 14 49 426 20 1,048,574 0.3038 s

N44 44 1294 6315 79 24,122,225 5.5966 s

The effect of constraining the number of lines that can be
simultaneously opened in a scenario not only enhances the
practical significance of the method but also increases the
computational efficiency when working with large systems
for dynamical studies. In Figure 10 we see that the execution
time grows exponentially as the number of branches increases
requiring several minutes for a system with ≈ 30 branches.
This number can represent relatively low interconnected grid
models. Thus, we see that the method requires an adjustment
for dealing with large-scale highly-interconnected systems.

Fig. 10. Scalability of the contingency generation algorithm without con-
straining the number of simultaneous outages.

By setting an upper bound on the number of maximum
simultaneous contingencies, the execution time diminishes
(from minutes to seconds) since the number of possible
combinations is truncated. However, the number of scenarios
is still significant: around 20 million for a system with ≈ 80
branches which can be obtained in less than 10 seconds. This
suggests that working with larger grids would need to limit
further the number of simultaneous trippings.

It must be stressed that the total amount of contingencies
constitutes the sampling pool for the second stage of the
proposed algorithm. The larger the pool is, the faster the



method samples an arbitrary number of scenarios. It is clear
that a larger scenario pool will ease the search for feasible
contingency conditions.

Fig. 11. Scalabiliity of the contingency generation algorithm with an upper
bound on the number of simultaneous line trippings.

VI. CONCLUSIONS

Through this work, we have seen how several ML methods
can be employed to classify eigenvalues representing the
behavior of a power system after the occurrence of a con-
tingency. In particular, a decision tree and a NN have shown
to be almost as accurate as a conventional classifier solution
which computes the damping ratio for each eigenvalue while
predicting faster. In this example, a considerable number of
scenarios were studied by automating Modelica-based power
system simulations thanks to the Python-Dymola Interface.
The use of the PDI enabled to integrate the development of the
ML to the power system simulation. The trained NN showed
classification performance above 95% for the testing data. This
promising result highlights the potential of ML methods for
deployment in real-time intelligent power system solutions.
Future work will be focused on analyzing performance sen-
sitivity to NN architecture, activation function selection and
scalability of the synthetic data generation approach for bigger
systems.

REFERENCES

[1] N. Vyakaranam, Bharat Samaan, X. Li, R. Huang, Y. Chen, and
X. Vallem, Mallikarjuna Nguyen, Tony and Tbaileh, Ahmad and Eli-
zondo, Marcelo and Fan, “Dynamic Contingency Analysis Tool 2.0
User Manual with Test System Examples,” Pacific Northwest National
Laboratory, Tech. Rep., 2019.

[2] A. Géron, Hands-On Machine Learning with Scikit-Learn, Keras and
TensorFlow, 2nd ed. O’Reilly, 2019.

[3] S. A. R. Konakalla and R. A. de Callafon, “Feature Based Grid Event
Classification from Synchrophasor Data,” Procedia Computer Science,
vol. 108, pp. 1582–1591, 2017.

[4] C. Zheng, V. Malbasa, and M. Kezunovic, “Regression tree for stability
margin prediction using synchrophasor measurements,” IEEE Transac-
tions on Power Systems, vol. 28, no. 2, pp. 1978–1987, may 2013.

[5] J. D. Pinzón and D. G. Colomé, “Real-time multi-state classification of
short-term voltage stability based on multivariate time series machine
learning,” International Journal of Electrical Power & Energy Systems,
vol. 108, pp. 402–414, jun 2019.

[6] H.-Y. Su and T.-Y. Liu, “Enhanced-Online-Random-Forest Model for
Static Voltage Stability Assessment Using Wide Area Measurements,”
IEEE Transactions on Power Systems, vol. 33, no. 6, pp. 6696–6704,
nov 2018.

[7] W. D. Oliveira, J. P. Vieira, U. H. Bezerra, D. A. Martins, and
B. d. G. Rodrigues, “Power system security assessment for multiple
contingencies using multiway decision tree,” Electric Power Systems
Research, vol. 148, pp. 264–272, jul 2017.

[8] I. Konstantelos, G. Jamgotchian, S. Tindemans, P. Duchesne, S. Cole,
C. Merckx, G. Strbac, and P. Panciatici, “Implementation of a Massively
Parallel Dynamic Security Assessment Platform for Large-Scale Grids,”
in 2018 IEEE Power & Energy Society General Meeting (PESGM).
IEEE, aug 2018, pp. 1–1.

[9] W. Peres, E. J. de Oliveira, J. A. Passos Filho, and I. C. da
Silva Junior, “Coordinated tuning of power system stabilizers using
bio-inspired algorithms,” International Journal of Electrical Power &
Energy Systems, vol. 64, pp. 419–428, jan 2015. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0142061514004724

[10] D. Chitara, K. R. Niazi, A. Swarnkar, and N. Gupta, “Cuckoo
Search Optimization Algorithm for Designing of a Multimachine
Power System Stabilizer,” IEEE Transactions on Industry Applications,
vol. 54, no. 4, pp. 3056–3065, jul 2018. [Online]. Available:
https://ieeexplore.ieee.org/document/8309288/

[11] M. J. Rana, M. S. Shahriar, and M. Shafiullah, “Levenberg–Marquardt
neural network to estimate UPFC-coordinated PSS parameters to
enhance power system stability,” Neural Computing and Applications,
vol. 31, no. 4, pp. 1237–1248, apr 2019. [Online]. Available:
http://link.springer.com/10.1007/s00521-017-3156-8

[12] F. R. S. Sevilla and L. Vanfretti, “A small-signal stability index for power
system dynamic impact assessment using time-domain simulations,” in
2014 IEEE PES General Meeting — Conference & Exposition. IEEE,
jul 2014, pp. 1–5.

[13] J. H. Chow and J. J. Sanchez-Gasca, Power System Modeling, Compu-
tation, and Control. John Wiley & Sons, 2020.

[14] M. Baudette, M. Castro, T. Rabuzin, J. Lavenius, T. Bogodorova, and
L. Vanfretti, “OpenIPSL: Open-Instance Power System Library - Update
1.5 to iTesla Power Systems Library (iPSL): A Modelica library for
phasor time-domain simulations,” SoftwareX, vol. 7, pp. 34–36, jan 2018.

[15] Dassault Systèmes, Dymola User Manual. Dassault Systèmes, 2018.
[16] Z. Zhuo, E. Du, N. Zhang, C. Kang, Q. Xia, and Z. Wang, “Incorporating

Massive Scenarios in Transmission Expansion Planning with High
Renewable Energy Penetration,” IEEE Transactions on Power Systems,
pp. 1–1, 2019.


