FluxPMU — A Maker’s Guide of a DIY
Synchronized Phasor Measurement Unit

Emmett Williamson, Luigi Vanfretti, Prottay M. Adhikari, Jerry W. Dziuba

ECSE Department
Rensselaer Polytechnic Institute
Troy, NY, USA

email: emmettact@gmail.com, vanfrl @rpi.edu, mondap2 @rpi.edu, dziubj@rpi.edu

Abstract—Synchrophasor technology is transforming the way
the power grid is being monitored thanks to the benefits
provided by synchronized Phasor Measurement Units (PMUs).
To exploit these benefits, future power engineers need better
understanding of how PMUs work at all levels, from hardware
components to phasor estimation methods implemented in soft-
ware. However, hands-on experiences with these technologies
allowing students to “tinker” with a PMU are limited. The
FluxPMU project aims to enable students to explore and build
an open source, low cost PMU. Building from the legacy of
OpenPMU V1, FluxPMU provides a Do-it-Yourself (DIY) guide
with all documentation and software sources required to build
the FluxPMU, which can be found in the following Github repos-
itory: https://github.com/alsetlab/fluxpmu. This pa-
per summarizes the authors’ efforts in creating this Maker’s
Guide.

I. INTRODUCTION

A. Motivation

Major power system outages, such as 2003 Northeast Black-
out [1], 2012 India Blackout [2], 2014 Bangladesh Blackout
[3], 2019 London Blackout [4], have highlighted the advan-
tages of high update rate and time synchronized measurements
for system awareness. One of the main ways this is achieved
is through Phasor Measurement Units (PMUs), which produce
time sycnhronized synchrophasor measurements. It has been
suggested that, implementing more Phasor Measurement Units
(PMUs) could have helped control the power loss by providing
grid operators with more information in all those cases. It is
to be noted that, although nine PMUs were in use during the
blackout reported in [2], two of them (in crucial locations)
were not connected to communicate with control centers. The
reports associated with these blackouts, suggest that these
systems lacked situational awareness and system visibility .

As the number of installed PMUs increases in the United
States [7], modern PMUs are considered to be a black box
of digital signal processing. For instance, industry grade
protective relays with PMU functionalities or standard PMUs
provide the necessary functionalities, but are difficult to adopt
for teaching applications as it is challenging to tinker with their
internal hardware and functions beyond configuration changes

This work was supported in part by Dominion Energy Virginia and in
part by the Center of Excellence for NEOM Research at the King Abdullah
University of Science and Technology under grant OSR-2019-CoE-NEOM-
4178.12.

David Laverty
Energy, Power and Intelligent Control
Queen’s University Belfast
Belfast, UK
email: david.laverty @qub.ac.uk

without risking potential damage. Another constraint is that
the cost of industry-standard PMUs are over $7000 USD [8],
which is too expensive for educational purposes. Additionally,
an industrial grade PMU requires special setup to be safe.
Using main power line voltage, current and power, poses safety
requirements difficult to fulfill in a classroom setting.

The main requirements to consider for an educational PMU
are: (i) low cost, (ii) ability to expose students to hands-on
learning on the inner workings of the devices, (iii) safety, and
(iv) adequate documentation. While the industry grade devices
offer plentiful documentation, they do not fulfill requirements
(1)-(iii). On the other hand, several open source PMUs that
have been created could offer a solution to the cost, but lack
the documentation for students use. FluxPMU aims to solve
these issues.

FluxPMU is an open-source, low-cost PMU suitable for
educational purposes. Being an open source hardware-software
solution, FluxPMU would enable the students to explore
and modify the entire signal path. Students will have the
opportunity to configure and readjust hardware components
like CTs and PTs, burden resistors, etc. It is also possible to
have direct access to the ADC stage, where analog signals are
converted into digital measurements. Apart from hardware and
software, the FluxPMU project consists of a documentation
dedicated to the build process. The documentation was written
specifically to be used by students to ameliorate the build pro-
cess, and help improve the understanding of each component,
and how a PMU works. However, it must be noted that this
implementation requires the students to have electrical safety
training, as it involves working with high voltages.

B. Previous and Related Work

FluxPMU is based on OpenPMU VI1 [9], [I5], [16].
OpenPMU V1 has the main benefit from educational purposes
to expose the student to all software and hardware aspects
that need to be considered for a functional PMU. National
Instruments has archived the OpenPMU V1 project [24] in
their library. The authors have collaborated to build on the
legacy of OpenPMU V1 for educational purposes, and thus, the
hardware and software is nearly identical between FluxPMU
and OpenPMU. The main difference is that the documentation
provided by FluxPMU will offer a more comprehensive guide

specifically tailored for students and educational purposes. The
main criticism of OpenPMU V1 [11] and thereby of FluxPMU
is that of the use of a National Instruments (NI) 6009 Data
Acquisition (DAQ) and the NI LabVIEW [10] software being
proprietary. While the dependency on the NI 6009 still remains
an issue, the dependency on LabVIEW is now less important
as NI has released LabVIEW Community Edition in 2020
which provides full featured access for open source projects,
however, using this design in a classroom setting would require
the University to have licenses available. This last aspect is not
of concern for the authors’ institutions, which have LabVIEW
licenses, and similarly for many other institutions that also
subscribe to NI's educational licensing programs.

OpenPMU V2 [17] reports a next generation design replac-
ing the paradigm used in OpenPMU V1, which addresses the
previous limitations by using low cost Single Board Computers
(SBCs), mainly the Raspberry Pi and the BeagleBone Black.
It is a truly open source and open hardware PMU project, and
estimated to cost only around $200 USD [7]. However, the
technology stack used for this project is too complex for its
use in an educational setting at the undergraduate level.

Other than OpenPMU, it is difficult to find open source,
low cost PMU designs suited specifically for students. Several
other low-cost PMU designs have been created [11]. Designs,
such as FluxPMU, emerge from the pre-SBC era, for example
GridTrak PMU from Arnold Stadlin [18] is a classic micro
controller-based device that performs all computations in an
integrated board, while the DTU-PMU developed at Technical
University of Denmark [19], [20] uses a combination of a
DAQ, a DOS computer and a Windows 2000 computer. While
FluxPMU and GridTrak designs are still possible to build
and further develop, the rapid advances of SBC make their
integrated features more attractive for new designs. This is
evident in the new OpenPMU V2, PhasorsCatcher [11] and
the recent efforts from RWTH Aachen University LOCO. A
similar implementation was carried out in [23]. However, most
of these projects have focus on producing a low cost PMU,
while they are unsuitable for educational purposes as they offer
limited or no documentation on how to build the PMUs by
oneself, with exceptions (GridTrak and OpenPMU V?2).

OpenPMU V1 utilizes NI LabVIEW, which uses its ”graph-
ical programming environment” for easy visualisation of data
within the LabVIEW environment. But, the main drawback of
V1 is that the sampling clock of the NI-DAQ can’t be synced
directly to the GPS time source. This limitation is solved
in the OpenPMU V2 hardware with the introduction of a
GPS disciplined ADC unit inside the Data Acquisition (DAQ)
System [17]. However, this hardware is predominantly driven
through command-line and lacks an easy ’graphical interface’.
Thus, OpenPMU V2 somewhat requires skills beyond those
expected from undergraduate students.

Another option to implement a PMU for educational pur-
poses is through the use of a National Instrument (NI) Com-
pact Reconfigurable Input/Output (CRIO). By selecting input
modules that collect voltages and a timing GPS signal, the
software run on the FPGA used by a CRIO could model a

com
PORT
PIN Header

Il
(I s —

E0R1

Traco Power Terminal

unit

e <
+

s
- T

R2 R3 Rd RS
N N S .

Transformer Transformer Transformer
C B A

B =n

D1 34-way header
@

|BUIWIR L M3.35

— Screw

18F252

Screw Terminal

E
E
g
| - 5
3

SN75155P

14-way

RO R7

Fig. 1. Hardware layout for the circuit board components of FluxPMU

PMU [14]. However, there are several problems in using a
CRIO. First, is the cost of both a CRIO and the modules
themselves would easily cost more than other open source
hardware examples. Secondly, the CRIO PMU would be
mostly software driven and not offer exposure to any other
sort of applicable hardware involved in a PMU other than
configuring and programming the modules. This can result in
a misunderstanding of the importance of both software and
hardware aspects in PMUSs. Thirdly, CRIO hardware has a
steeper learning curve, specially for undergraduate students.

The Github repository provides a Bill of Materials (BOM)
with costs for all parts. The total cost depends on market prices
and the type of transformers used. Based on recent purchases,
costs when using the Hall effect-based PCB will vary from
$897.52 to $937.01 and $726.29 and $765.78 for the one using
AVB isolation transformers.

C. Contribution

o The entire build process, and all unexpected issues asso-
ciated with have been documented, along with solutions
and work around that were found. The documentation
for the build process has been consolidated in a Maker’s
Guide in an attempt to improve ease-of-use and facilitate
a student’s experience building FluxPMU.

e All of the software associated with FluxPMU was doc-
umented to give students a better understanding of what
happens behind the scenes. Additional software was also
added to give students more resources to understand how
FluxPMU works.

e The FluxPMU project adds documentation and work
through guides to all of the hardware associated with
building the project, along with examples of how

FluxPMU was built in the ALSET Lab of Rensselaer
Polytechnic Institute.

II. BACKGROUND

A Phasor Measurement Unit is a device that measures the
voltage and/or current in power lines based on phasor repre-
sentation of those periodically varying quantities. In measuring
the phasor, a PMU produces a synchrophasor measurement
by combining the phasor measurement with a time stamp. In
most cases, PMUs combine results from several measurement-
windows in order to publish a single output value. Time
stamps typically come from Global Positioning System (GPS)
satellites. In doing so, power grid operators can use the time
synchronous measurements to perform more accurate data
collection and analysis when multiple PMUs are used. A
complete treatment of PMU technology is outside the scope
of this work. A more comprehensive background information
on PMUs is provided in [22], [9].

III. HARDWARE

The implementation of FluxPMU can be broadly separated
into two parts,

o An electronic board for the acquisition of electrical
signals. NI 6009 DAQ is used for acquiring the signals
and converting them from analog to digital quantities.

o Algorithms implemented in LabVIEW that acquire the
data for phasor estimation executed within a PC.

A simplified system diagram of FluxPMU is shown in
Fig.3. The hardware for FluxPMU consists of an assortment
of components for the circuit board itself, along with several
external devices. The bulk of the hardware comes from the
components that are soldered on to the FluxPMU board, as
shown in Fig. 1. This board is a standard HV-transducer
board. A comprehensive list of these components is shown
in the bill of materials (within the Maker’s list). The basic
layout for the circuit board hardware is shown in Fig. 1. It is
important to note that, this part of the work requires the usage
of high-voltage equipment, which should be used only under
the supervision of a qualified individual.

The external components consist of the following:

A. PIC I8F2525

The PIC micro controller is used to work with the GPS
NMEA signals received via the RS-232 standard, and output a
code used by FluxPMU. Additionally, the PIC micro controller
generates the 60 Hz (or 50 Hz) pulse train that triggers the
NI-6009. Once the PIC records the NMEA data, it parses
through that data to retrieve the time information. The PIC
micro controller essentially enables the time transfer to the
PC. The way this is achieved is that the NI-DAQ toggles a
pin momentarily high, and records the CPU counter value
(of the order of nanoseconds) at the moment this happens.
The PIC sends a message by the RS232 port to LabVIEW
to tell LabVIEW the time of day that it saw the rising edge.
LabVIEW then extrapolates the time from the CPU counter.
The major hardware constraints in this approach are, the

latency of the LabVIEW code, the latency of the USB bus,
and the NI DAQ.

A programmer along with some additional software from
Microchip Technology are required to program the PIC micro
controller. The programming hardware is a PICkit 3, which
connects to 5 of the PIC 18F2525’s pins. To run the program-
mer, Microchip’s MPLAB IDE is used. Although, it must be
noted, that the 1PPS of the GPS connects directly to the PIC,
which does the time-transfer, and enables the PMU for time
synchronous measurements.

B. GPS Reciever

A GPS receiver is required to implement this hardware.
In this particular implementation a Germic I8x integrated
GPS receiver and antenna was used. The location data is
transmitted via National Marines Electronics Association’s
(NMEA) 0183 ASCII interface specification [12] and uses the
RS-232 standard to send the location information to the PIC
micro controller. The Garmin hardware sends navigational
information in NMEA format, which contains the crucial
timing-information required for PMU operation [12]. It needs
to be noted, that the NI-6009 receives the timing information
for debugging purposes, which would be useful specially when
the substation is in a remote location.

The time transfer comes in the form of a 1 Pulse-Per-Second
(1PPS) signal. This signal is sent directly to the PIC micro-
controller, which is supposed to generate the 60 Hz pulse train-
that will trigger the NI-6009. If the NI-6009 fails to receive the
trigger, LabVIEW will get stuck. It is worth noting that, this
part of the setup is responsible for enabling the time-transfer,
which is crucial in terms of the operation of the PMU. Without
the functional time-transfer the PMU will not be able to work.

C. NI USB-6009 OEM

The NI 6009 is a multifunction Input/Output (IO) device
that provides DAQ functionalities which are easily accessed
through a host computer running different NI software, includ-
ing LabVIEW. In other words, it acts as a data acquisition
board which records the input voltage signals through three
analog input pins. It is able to produce 14 bit long digital
outputs at a rate of 48 kS/second.The digital I/O pins can
be accessed in order to develop a real-time control system
development such as the one reported in [25]. Additionally,
the NI 6009, receives the 1PPS timing signal that can be used
for debugging purposes only. The NI 6009 DAQ is interfaced
with the host computer via a standard USB cable.

D. Power Supplies and Other Hardware

An external power supply is required to complete the
construction of the FluxPMU hardware. The power supply has
an input of 100-240 V AC supply with a maximum current
rating of 1.2 A and a frequency rating of 50/60 Hz. The
output is rated at 12 V, 4.5 A. In this particular implementation
MeanWell HDR 60-12 power-supply unit was used. The wiring
connected to it used standard gauge 22 wire.

DAQ Config -
Prepares DAQmx for

DAQmx Read-

Converts the analog

analog voltage input values into waveform

array data

DAQmx functions

1
al
=
g: DAQ Config- Measures DAQmx functions

=i Analog voltage input

=l
el

timestamp

o

GPS functions- Library

GPS Data acquired

|
I
i Finalize Input Scales | |
I
I

from config file

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Use configuration file to

Main VI - Uses all

I
|
|
sub VI-s to get PMU ||
data) i

amplitude measurement |

read ID/IP/Port no
_________________ @
=
scale @ from 0 to 180 |1 =
e
| &
=l
| U
|
]

Fig. 2. Algorithmic Flowchart for the FluxPMU

-
)\{ 1 PPS Ray PIC L F_z
: GPS data | Microcontroller ST w
E°E | §
o
Timing PC =
info =
&=

1/3 phase CSBAB
Raw e e 7 -/
\'olig\ge Transformer NIDAQ Fsrchrophaor

Fig. 3. Simplified system diagram of FluxPMU

Overall Assembly

The steps required to assemble the hardware have been
documented in the Maker’s Guide and are summarized in
section V. The simplified flowchart of FluxPMU in Fig. 2
summarizes how different VIs communicate with each other
and complete the overall algorithm to compute the PMU data.
The operations performed by these VIs can be classified into
four different categories. In Fig. 2

o The blue box contains all the data acquisition function-

alities,

o The red box includes the software based signal condi-

tioning and scaling functionalities,

o The grey box contains the network functionalities,

o The green box contains the timing functions.

In summary, the PMU system starts up by receiving the
raw voltage and GPS time signals simultaneously. The 1PPS
received from the GPS is utilized by the PIC micro-controller
to generate time-synchronous measurements for the PMU.
The data acquisition and analog-to-digital conversion is done
by a DAQ board from NI. Once all of the data processing
has been complete, the GPS time stamp signal and voltage
measurements are formatted as synchrophasors in LabVIEW.

IV. SOFTWARE

The software to drive FluxPMU is based on the NI G
programming language of the LabVIEW software. G is a
graphical programming language, designed for systems engi-
neering and real time applications [10]. Within LabVIEW, a
Virtual Instrument (V) is the basic building block of programs

written in the G language. A VI consist of a front panel which
acts as a graphical user interface, and a block diagram that
consists of the graphical programming blocks. An example of
the front panel for FluxPMU is shown in Fig.5.

Before running the main VI which utilizes all the other
subordinate Vs, a few LabVIEW specific drivers including NI
DAQmx Driver, NI VISA Driver, and LabVIEW Real Time
need to be installed on the system. Once these are resolved,
FluxPMU software can be opened in LabVIEW. Once opened,
there are several configuration settings that need to be taken
care of, as shown through the example from the Maker’s
Guide.

There are are 18 additional VIs that are used to set up
configuration files, performing computations, and displaying,
storing and if desired, reporting of PMU data via UDP with
a simplified data frame which is based on NMEA. Since, the

Fig. 4. Hardware prototype of a fully operational FluxPMU.

Voltage 0 (Detected Frequiiil |

Voltage Waveform
10-)

Voitage 0 [HEN

Frequency 2
60.05-)

60.04-

M -
. £ 602
2
Py ol
£ § 5
© o
= £ s098-]

5996
] 50,95 M.
003 367634E-2

|
3.676394E:

!
3.6763%4E+9

Time Time
Phase 2 Voltage 0 (Detected Phas |
Acquisition Time qp. o de and design of this VI are licensed
835:39.699PM under the terms of the New BSD License.
77112020 Please see the Vl documentation o License.txt
for more details.
Amplitude
158 Copyright (c) 2012, David Laverty
Frequency www.OpenPMU.org
39.99 P Port
Bhess 192.168.10.205 40001
11417
Transmitted Dat; =Ry ! !
ransmitted Data 3.6763UE+0 1ET6IBED 3.676304E
$PMU123 V1xx1,3676494939.700,1.575,59.994,114.16600 Time

Configuration Information:
The ID and IP address to which the OpenPMU sends data is configured by 'C:\PMUconfig.ini'. If this doesn't exist, create it.

Copy and paste the blus text below without the dashed lines inte PMUconfig.ini.

Fig. 5. A fully operational FluxPMU with the front panel for the single phase
software with a single phase input

GPS stage uses the same NMEA specifications, it would be
easier for the students to work with this data as they are already
familiarized with it.

V. ASSEMBLY

The process to assemble all of the components in order to run the
FluxPMU are detailed throughout the Maker’s Guide. The following
summarizes the main steps of the process:

1) Decide on a version of FluxPMU and order the required
parts and make/order the printed circuit boards, i.e. 1¢ or 3¢
voltages.

2) Download and install all of the necessary software and become
familiar with the code.

3) When parts arrive, complete each individual external hardware
component, and attach circuit components to the board.

Once FluxPMU has been completely assembled it should resemble
the prototype in Fig. 4. To acquire measurements, the GPS antenna
should be placed following the recommendations in [21], the voltage
signals should be connected to the board’s input, and the USB cable to
the computer. Once this is done, after executing the main program,
the front panel will look like that of in 5, which shows the input
voltage waveform and all computed quantities.

Performance analysis on the base designs of FluxPMU have been
conducted under both nominal and dynamic conditions in [26] and
[27], respectively. Testing results show that this PMU fulfills the
steady state requirements set out in the IEEE Standard C37.118.1-
2005 standard, but not all the dynamic tests stipulated in the 2011
standard and the amendments made in 2014 [27]. This can be
improved based on the results in [17] and will be subject to future
work.

VI. CONCLUSION

The purpose of the FluxPMU project is to enable students to
explore and build an open source, low cost PMU. While there
are several other open source, low cost PMUs available for fur-
ther research, FluxPMU aims to tackle issues students may find
when trying to build open source projects. By providing thorough
documentation on the build and operation process, FluxPMU offers
more to the student experience than other similar open source
PMUs. All documentation and software sources required to build
the FluxPMU can be found in the following Github repository:
https://github.com/alsetlab/fluxpmu .

(1

[2]

(3]

(4]

(5]

(6]

(7]

[8]
[91

[10]

[11]

[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

REFERENCES

“"Report on August 2003 Blackout”, Department of Electricity [Online]
Available: https://www.energy.gov/oe/services/electricity-policy-coordination-and-
implementation/august-2003-blackout

Loi Lei Lai, Hao Tian Zhang, Chun Sing Lai, Fang Yuan Xu and S.
Mishra, “Investigation on July 2012 Indian blackout,” 2013 International Con-
ference on Machine Learning and Cybernetics, Tianjin, 2013, pp. 92-97, doi:
10.1109/ICMLC.2013.6890450.

M. A. Kabir, M. M. H. Sajeeb, M. N. Islam and A. H. Chowdhury, “Frequency
transient analysis of countrywide blackout of Bangladesh Power System on Ist
November, 2014,” 2015 International Conference on Advances in Electrical Engi-
neering (ICAEE), Dhaka, 2015, pp. 267-270, doi: 10.1109/ICAEE.2015.7506847.
W. Mathis, M. Carr, "London Blackout Blamed on Drop in Wind and Natural-
Gas Power”[Online] Available: https://www.bloomberg.com/news/articles/2019-
08-09/london-blackout-occurred-amid-drop-in-wind-and-natural-gas-power

R. F. Nuqui and A. G. Phadke, “Phasor measurement unit placement techniques
for complete and incomplete observability,” IEEE Transactions on Power Delivery,
vol. 20, no. 4, pp. 2381-2388, 2005.

Wald, M. L. (2013, November 11). The Blackout That Exposed the Flaws
in the Grid. Retrieved from https://www.nytimes.com/2013/11/11/booming/
the-blackout-that-exposed- the- flaws-in-the- grid.html

“Advancement of Synchrophasor Technology,” U.S. Department of Energy, Office
of Electricity Delivery and Energy Reliability , Mar-2016. [Accessed: 20-Jul-2020]
Schweitzer Engineering Laboratories, “SEL 421-4, -5 Instruction Manual.” 2016.
D. M. Laverty, R. J. Best, P. Brogan, I. Al Khatib, L. Vanfretti and D. J.
Morrow, "The OpenPMU Platform for Open-Source Phasor Measurements,” in
IEEE Transactions on Instrumentation and Measurement, vol. 62, no. 4, pp. 701-
709, April 2013, doi: 10.1109/TIM.2013.2240920.

“What is LabVIEW?,” NI. [Online]. Available: https://www.ni.com/en-us/shop/
labview.html. [Accessed: 31-Jul-2020].

D. Schofield, F. Gonzalez-Longatt and D. Bogdanov, “Design and Implementation
of a Low-Cost Phasor Measurement Unit: A Comprehensive Review,” 2018
Seventh Balkan Conference on Lighting (BalkanLight), Varna, 2018, pp. 1-6.
Garmin International Inc, “GPS 18x Technical Specifications.” Oct-2011.

C. G. C. Carducci, et al, “A Versatile Low-Cost OS-based Phasor Measurement
Unit,” 2019 IEEE International Instrumentation and Measurement Technology
Conference (I2ZMTC), Auckland, New Zealand, 2019, pp. 1-6.

P. Romano and M. Paolone, “Enhanced Interpolated-DFT for Synchrophasor Esti-
mation in FPGAs: Theory, Implementation, and Validation of a PMU Prototype,”
in IEEE Transactions on Instrumentation and Measurement, vol. 63, no. 12, pp.
2824-2836, Dec. 2014.

D. M. Laverty, et al “OpenPMU: Open source platform for Synchrophasor
applications and research,” 2011 IEEE Power and Energy Society General Meeting,
Detroit, MI, USA, 2011, pp. 1-6.

D. M. Laverty, L. Vanfretti, I. Al Khatib, V. K. Applegreen, R. J. Best and D.
J. Morrow, "The OpenPMU Project: Challenges and perspectives,” 2013 IEEE
Power Energy Society General Meeting, Vancouver, BC, 2013, pp. 1-5, doi:
10.1109/PESMG.2013.6672390.

X. Zhao, D. M. Laverty, A. McKernan, D. J. Morrow, K. McLaughlin and S.
Sezer, “GPS-Disciplined Analog-to-Digital Converter for Phasor Measurement
Applications,” in IEEE Transactions on Instrumentation and Measurement, vol.
66, no. 9, pp. 2349-2357, Sept. 2017.

A. Stadlin, “GridTrak OpenSource PMU (GTosPMU) Sensor.” [Online]. Available:
https://github.com/ajstadlin/GridTrak. [Accessed: 7-August-2020].

R. Garcia-Valle et al. “DTU PMU laboratory development — Testing and vali-
dation,” 2010 IEEE PES Innovative Smart Grid Technologies Conference Europe
(ISGT Europe), Gothenberg, 2010, pp. 1-6,

L. Vanfretti et al., “Estimation of Eastern Denmark’s electromechanical modes
from ambient phasor measurement data,” IEEE PES General Meeting, Providence,
RI, 2010, pp. 1-8.

North American SynchoPhasor Initiative, “A Guide for PMU Installation, Com-
missioning and Maintenance. Part II. PMU INstallation Procedures.” June 5, 2007.
[Online] Available: https://www.naspi.org/sites/default/files/reference_documents/
81.pdf. [Accessed: 7-August-2020.]
North American SynchroPhasor
reference-documents

Colin Chapman et al "Wide Area Measurement System Utilizing Open Source
Tools”, Proceedings of The National Conference On Undergraduate Research
(NCUR) 2013 University Wisconsin La Crosse, La Crosse, WI

"Why choose NI for PMUs and Wide Area Monitoring”, [Online], Available:
https://www.ni.com/en-us/innovations/white-papers/16/why-choose-ni-for-pmus-
and-wide-area-monitoring.html

R. J. Best, et al, "Synchrophasor Broadcast Over Internet Protocol for Distributed
Generator Synchronization,” in IEEE Transactions on Power Delivery, vol. 25, no.
4, pp. 2835-2841, Oct. 2010, doi: 10.1109/TPWRD.2010.2044666.

D.M. Laverty, R.J. Best, P. Brogan, I. Al Khatib, L. Vanfretti, and D.J. Morrow,
“OpenPMU Platform for Open Source Phasor Measurements”, IEEE Transactions
on Instrumentation and Measurements, vol. 62, no. 4, April 2013, pp. 701 — 709
P. Brogan, D.M. Laverty, Xiaodong Zhao, John Hastings, D.J. Morrow, and L.
Vanfretti, “Technique for Pre-Compliance Testing of Phasor Measurement Units”
International Journal of Electrical Power Energy Systems, Vol. 99, July 2018, pp.
323 - 330.

Initiative, ~ Available: https://naspi.org/

